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An organic-soluble �-conjugated [1]rotaxane has been syn-
thesized by intramolecular self-inclusion of a lipophilic per-
methylated �-cyclodextrin bearing a rigid �-conjugated system
as a guest moiety. End-capping has been achieved successfully
by connecting an aniline moiety without using bulky stoppers.
The structure of the [1]rotaxane was determined by 2DNMR
spectroscopy.

�-Conjugated systems constitute a core technology for next-
generation electronic materials such as organic light-emitting
diodes (OLEDs), organic thin-film field-effect transistors, and
fluorescent probes. Recently, particular attention has been paid
to insulated �-conjugated systems with high stability, high
solubility, and high fluorescence quantum yield arising from
the decreased �–� interaction among the �-conjugated systems
and/or their separation from the external environment.1 Various
water-soluble rotaxanes2 having insulated �-conjugated systems
have been prepared using cyclodextrins (CDs) as a protective
cylindrical sheaths.3 For example, [2]rotaxanes have been syn-
thesized by the inclusion of a �-conjugated system into a CD
in aqueous medium followed by the end-capping of the complex
with two water-soluble bulky stoppers. Tian et al. synthesized a
[1]rotaxane4,5 by forming an intramolecular self-inclusion com-
plex of an azobenzene-linked �-CD and subsequent end-capping
with a water-soluble bulky stopper for a light-driven molecular
machine. We report herein a new synthetic method of rotaxanes
having high organic solubility and high coverage of a �-conju-
gated system (axial guest) with a macrocyclic host.

Our strategy to fabricate a [1]rotaxane is based on intramo-
lecular self-inclusion of lipophilic permethylated �-cyclodextrin
(PM �-CD) bearing a diphenylacetylene derivative as a rigid
�-conjugated system and on a subsequent end-capping with a
nonbulky �-conjugated unit.

The substitution reaction of 6-O-monotosyl PM �-CD 16

with 2-iodo-5-acetamidophenol7 gave a modified PM �-CD
iodide 2 in 98% yield. The desired modified PM �-CD 3 was
prepared using a sequential Sonogashira coupling reaction of 2
with trimethylsilylacetylene and 1,4-diiodobenzene in 67% yield
(Scheme 1). Detailed procedures and the spectral data of these
compounds are described in Supporting Information.8

The intramolecular self-inclusion phenomenon of 3 has been
confirmed by CPK model and been examined by 1HNMR
employing different solvents and concentrations. As shown in
Figure 1, the NMR spectrum of 3 in CDCl3 at room temperature
reveals the exclusion of the diphenylacetylene moiety from the
cavity of the PM �-CD. The spectrum in CD3OD at room tem-
perature indicates the presence of a mixture of 3 and its supramo-
lecular complex (pseudo[1]rotaxane) 30. The intensity of new

peaks (a0–e0) increased on standing at room temperature over-
night or by warming up to 60 �C and then cooling to room tem-
perature indicating the slow equilibrium process at room temper-
ature. 3 was converted to the supramolecular complex 30 in D2O:
CD3OD = 1:1 and disappeared completely. The evidence that

Scheme 1. Synthesis of a modified PM �-CD 3.

Figure 1. The aromatic region of 400MHz 1HNMR spectra of
3 in several solvents at rt. 1) CDCl3; 2) CD3OD (soon after dis-
solved); 3) CD3OD after heating at 60 �C for 60min and cooling
to rt; 4) D2O:CD3OD = 1:1 after heating at 60 �C for 60min and
cooling to rt.
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the NMR spectra of 30 at different concentrations in D2O:
CD3OD = 1:1 showed no new peaks ascribable to oligomeric
and/or polymeric supramolecular complexes may support intra-
molecular self-inclusion complex (pseudo[1]rotaxane) 30.

The formation of 30 resulted in the following up- or down-
field shifts of aromatic protons in 30, Ha{a0 (�0:25), Hb{b0

(+0.56), Hc{c0 (+0.13), Hd{d0 (+0.49), and He{e0 (+0.09 ppm).
The remarkably large downfield shift of Hd{d0 suggests that the
protons are located very close to the �-1,4-glucosidic oxygen
atoms of PM �-CD.9

In order to fix pseudo[1]rotaxane 30 by capping the end of
the guest moiety with a �-conjugated unit, 30 was treated with
aniline boronic ester under Suzuki–Miyaura coupling conditions
in H2O:CH3OH = 1:1 solution (Scheme 2). The desired [1]ro-
taxane 4 was purified by silica gel column chromatography
and was obtained in pure form in high yield (80%).8 This [1]ro-
taxane is soluble in various organic solvents such as methanol,
ethyl acetate, chloroform, toluene, and DMF. It is known that
the decomplexation of [1]rotaxane through ‘‘flipping’’ mecha-
nism is often observed owing to large flexibility of PM �-CD
in comparison to that of native �-CD.10 However, [1]rotaxane
4 was stable in CDCl3 for more than seven days without decom-
plexation. The corresponding uninsulated compound 5 was in-
tentionally synthesized by the reaction of 3 with aniline boronic
ester in DMF instead of 1:1 solution of H2O and CH3OH.

Kaneda et al. succeeded in synthesizing dimeric cyclic
[2]rotaxane via end capping of dimeric cyclic inclusion com-
pound of a para substituted azophenol-linked PM �-CD by azo
coupling using sterically hindered naphthol derivative.9 In our
[1]rotaxane synthesis, however, MALDI-TOF mass spectrum
exhibited only the peak at m=z 1558 corresponding to [4 +
Na]þ. No evidence for the formation of dimeric cyclic [2]rotax-
ane was detected by MALDI-TOFMS and GPC analysis. It is
quite interesting that a pseudo[1]rotaxane was selectively gener-
ated from ortho substituted diphenylacetylene-linked PM �-CD
via intramolecular self-inclusion. The structure of this [1]rotax-

ane was confirmed by 2DTOCSY, COSY, and ROESY NMR.
The NOEs between protons on the diphenylacetylene moiety
and the internal protons of the PM �-CD were observed. The
details are described in Supporting Information.8

In order to examine the shielding effect of PM �-CD, we
compared the fluorescence quantum yield of 4 with that of the
corresponding uninsulated compound 5 (Table 1). As expected,
there is a significant fluorescence enhancement in 4 especially in
solid state suggesting that encapsulation of the chromophore by
PM �-CD is essential to attain efficient fluorescence properties.

In conclusion, an organic-soluble [1]rotaxane was prepared
via intramolecular self-inclusion of PM �-CD bearing a diphen-
ylacetylene moiety and subsequent end-capping with an aniline
unit by the Suzuki–Miyaura coupling. The present study re-
vealed that bulky stoppers are not necessary when [1]rotaxane
consist of PM �-CD as a macrocyclic host and a rigid conjugated
system as the guest unit are linked each other.
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Scheme 2. Synthesis of [1]rotaxane 4 and uninsulated com-
pound 5 by cross-coupling reaction in different solvents.

Table 1. Electronic spectra and fluorescence quantum yieldsa

Sample
Absorption
(�max/nm)

Emission
(�max/nm)

�solution �solid

4 328 398 0.89 0.68
5 338 396 0.71 0.06

aSpectra were recorded in CHCl3. Absolute quantum yields
were determined by a calibrated integrating sphere system.
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